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Large-scale effects

¢ We have neglected large-scale effects in the derivation
of the density fluctuation in redshift-space.

¢ We have neglected terms in the redshift
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¢ VWe have neglected terms in the calculation of the Jacobian
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Hierarchy

¢ [he perturbations can be classified:
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¢ Well inside the horizon: % >l

¢ Density and redshift distortions dominate
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Near the horizon

¢ What happens at very large scales’

¢ Modes outside the horizon, with % < 1 are not observable.

¢ Large surveys will observe modes near horizon, with — > 1
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non-negligible corrections dominant

¢ Current surveys are not affected by the large-scale modes
due to their Iimrted sky coverage.

BEaltlice surveys lke Euclid will observe much |argeg
volumes and may be sensitive to relativistic corrections.
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Relativistic derivation

iiinced 0 calculate the observed density flUGLEEEEHE
without neglecting large-scale contributions —» relativistic
calculation, beyond Newtonian approximation.

8 N cannot neglect large-scale terms In EIRStElRSEES!
conservation equations: ¢, = kvgm + 39’

¢ In general relativity the space-time is four-dimensional: a
galaxy which Is further away has emitted light earlier.

¢ Light does not travel on straight lines = lensing modifies
the observed distribution of galaxies.
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What are we observing!?

VWe count the number of galaxies per pixel.

Observed coordinates:

¢ redshift z

1
T . e
¢ direction of incoming light
| ¥ (6,9)
pixel dz
ds

We need to understand how our observables (number of
galaxies, solid angle and redshift bin) are affected by fluctuations
In the density, velocity and gravitational potential.
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What are we observing!?

¢ We count N(z,n) galaxies in the volume element V(z,n)

¢ We want to calculate the fluctuations in N(z,n) with
respect to the average number.

¢ At each redshift, we average over the directions: N(z)

¢ The observed over-density Is:

e N(z,n) — N(z)
obs N(Z)

¢ Relation with the matter energy density:

B o(zn) Viz,n) and N(z) = p(z) Vi
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Derivation
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We neglect non-linear terms:

Gl © a2 in)
N S

the background redshift is different
from the observed redshift
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Derivation

p+0p V +6V
R 7

the background redshift is different
from the observed redshift
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# 5,0(Z,Il) o p(z,n) = IO(Z)
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Derivation

z=Z+ 0z Taylor: p(2) = p(z + 02) = pl@) S A
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describes what we observe
in the linear regime
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Derivation

z=Z+ 0z Taylor: p(2) = p(z + 02) = pl@) S A

same redshift bin
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describes what we observe
in the linear regime
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Derivation

z=Z+ 0z Taylor: p(2) = p(z + 02) = pl@) S A

> same solid angle
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describes what we observe
in the linear regime
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Derivation

z=Z+ 0z Taylor: p(2) = p(z + 02) = pl@) S A

o same radial bin
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- — E ~ e different distance
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describes what we observe
in the linear regime
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Volume element

gives the direction of time for J
the galaxies inside the volume 4
R : : .
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L The null geodesic equation tells us how

directions and distances are perturbed.

®» observer
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Yoo et al (2010)
CB and Durrer (201 1)

Result Challinor and Lewis (2011
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Lensing

¢ Lensing describes the change in the solid angle of observation.

BERECAlsUrveys, It combines with another similarEllees
magnification bias.

¢ Galaxy surveys are limited In magnitude: we detect
galaxies brighter than a given threshold.

¢ Lensing changes the magnitude: galaxies behind a cluster
appear brighter.
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Observations

Correlation between background quasars and foreground galaxies.
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Large-scale effects
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The relativistic effects break the symmetry: the correlation
function depends on which galaxy Is In front or behind.

Redshift distortion breaks the isotropy, but not the symmetry.

distortion strong correlation
I o
&> ® «# no distortion ®
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weak correlation

Observer In Observer In
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Anti-symmetry

¢ We need different galaxies.

¢ One possibility: separate galaxies into two populations,

based on their luminosity, 1.e. bright and faint galaxies.

¢ VWe measure the cross-correlation between bright and faint:

different when the faint i1s behind or in front of the bright.

- The correlation is stronger when the faint is behind the bright.
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CB, Hui and Gaztanaga (201 3)

Dipole in the correlation function
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Can we measure the dipole?
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