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Cosmic shear at large scale

¢ Weak lensing Is a powerful tool to study the distribution
of matter. The current surveys are limited to small
patches in the sky (CFHTLS |/0 square degrees).

¢ Future surveys (Pan-STARRS, DES, LSST, JDEM, Euclid) will
cover almost the all sky  —» Measurements of shear

correlations at cosmological scales.

¢ At first order, the shear is smply related to the transverse

variation of the potential, integrated along the

¢ At second order, there are various couplings:

e Some couplings dominate at small scale.
e Other couplings become important when t
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Outline

¢ We computed all second-order corrections to the
Shear. Bernardeau, Bonvin and Vernizzi, 2010

¢ We solved the geodesic deviation equation In a
perturbed universe —p» various new couplings

¢ We are currently computing the bispectrum associated
with these non-linearities.

¢ In some configurations, the new couplings are
important with respect to the standard couplings.
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Magnification matrix
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First order
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First order
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First order
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First order
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First order
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Redshift perturbations

The conformal time 7s Is not an observable quantity.
We need to express Dgp as a function of the redshift zs

In a perturbed Universe, the redshift is perturbed.

¢ At first order, only the convergence is affected.

¢ At second order; the shear is also affected.
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Second order

d2
5 Dab = RacDet Rap = Rapu ko ki 0

¢ We Integrate on perturbed geodesics
—3» beyond Born approximation.

¢ We take Into account vector and tensor modes
ds® = —e*?dn® + 2w;dndz’ + (e =*Y8;; + hyj) da'da?

¢ We compute the reduced shear: g = T

¢ We take into account the perturbations of the redshift.
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Results: standard corrections

¢ Corrections to Born approximation
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Bernardeau et al. 1997
Cooray and Hu 2002

¢ Lens-lens couplings Dodelson et al. 2005

Shapiro and Cooray 2006
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New terms

¢ Intrinsic contribution
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¢ lime delay-lens coupling
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New terms

¢ Intrinsic contribution
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New terms

¢ Intrinsic contribution
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New terms
¢ Reduced shear
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¢ Redshift perturbations
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¢ Vector and tensor
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BiSPECtrum Bernardeau, Bonvin,Van de Rijt

and Vernizzi, in preparation.
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At Tirst order, the shear contains only E-modes.
At second order It contains both.
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Squeezed configuration
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Squeezed, flat configuration

Standard corrections:
*Born corrections
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Equilateral configuration

Standard corrections:
*Born corrections

b *Lens-lens couplings
£ee *Reduced shear
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Local primordial non-gaussianities
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Conclusion

¢ We found various second-order couplings In the
shear, that can be split In two classes:

Sl couplings with 4 transverse derivatives Simsls
dominate at small scales. They completely determine
the signal In the equilateral configuration.

¢ The couplings with 2 transverse derivatives, that
become important at large scales:

e In the squeezed limit, they contribute to 20 percents.
e In the flat squeezed limit, they dominate.

¢ In the future, we want to understand the scaling. VWe
also need to compute the dynamical second-order
Eedlar vector and tensor part, and to determmitiEmiEs
dependence of the bispectrum on cosmological

parameters.
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Primordial non-gaussianities:
equilateral
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